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ABSTRACT 
 
A semi-empirical algorithm for the retrieval of soil 
moisture, root mean square (RMS) height and biomass from 
polarimetric SAR data is explained and analyzed in this 
paper. The algorithm is a simplification of the distorted 
Born model. It takes into account the physical scattering 
phenomenon and has three major components: volume, 
double-bounce and surface. This simplified model uses the 
three backscattering coefficients (HH, HV and VV) at low-
frequency (P-band). The inversion process uses the 
Levenberg-Marquardt non-linear least-squares method to 
estimate the structural parameters. The estimation process is 
entirely explained in this paper, from initialization of the 
unknowns to retrievals. A sensitivity analysis is also done 
where the initial values in the inversion process are varying 
randomly. The results show that the inversion process is not 
really sensitive to initial values and a major part of the 
retrievals has a root-mean-square error lower than 5% for 
soil moisture, 24 Mg/ha for biomass and 0.49 cm for 
roughness, considering a soil moisture of 40%, roughness 
equal to 3cm and biomass varying from 0 to 500 Mg/ha 
with a mean of 161 Mg/ha. 
 

Index Terms— Soil moisture, roughness, biomass, 
polarimetry 
 

1. INTRODUCTION 
 
Soil moisture is a key parameter in the global warming 
context being part of water, energy and carbon cycles. Over 
bare surfaces, the soil moisture retrieval from polarimetric 
backscattering coefficients has been shown possible using 
some empirical [1-3] or physical models such as the Small 
Perturbation Model (SPM) [4]. However for vegetated-
covered surfaces, soil moisture estimate is a big challenge 
since the vegetation canopy is a complex environment 
where several scattering mechanisms make the problem 
more difficult. Moghaddam et al. developed an algorithm to 
estimate soil moisture under a boreal forest using L- and P-
band SAR data [5]. For their studied area, double-bounce 
between trunks and ground appears to be the most important 
scattering mechanism. Thereby, they implemented 

parametric models of radar backscatter for double-bounce 
using simulations of a numerical forest scattering model. 
Then a non-linear optimization process estimated the 
dielectric constant. Hajnsek et al. showed the potential of 
estimating the soil moisture under agricultural vegetation 
using L-band polarimetric SAR data [6]. They used 
polarimetric-decomposition techniques to remove the 
vegetation layer effect then to estimate soil moisture of the 
underlying ground. 
The Airborne Microwave Observatory of Subcanopy and 
Subsurface (AirMOSS) system of NASA/JPL will provide 
high-resolution observations of soil moisture over nine 
representative regions of North America and quantify the 
soil moisture variation on carbon fluxes estimate. The 
AirMOSS system is a dual-polarimetric synthetic aperture 
radar that will operate in P-band. The goal of this paper is to 
present a parameterized inversion model for soil moisture, 
biomass and roughness using the three backscattering 
coefficients: HH, HV and VV and based on physical 
parameters. This semi-empirical model is a simplification of 
the distorted Born model [7-8]. Volume backscattering 
comes from crown and trunk, double-bounce arises from 
interactions between either crown and ground or trunk and 
ground, and surface scattering is directly scattered by the 
soil surface with some attenuation through vegetation. First 
of all, the model formulation is presented. Next, the 
estimation process based on a non-linear optimization 
method is explained. Finally a sensitivity analysis based on 
some simulated data is done to assess the accuracy of the 
inversion process in function of initial values. 
 

2. THE MODEL 
 

The total backscattering coefficient measured by SAR is 
in general represented by: 

 

 pq
0  pqV

0  pqDB
0  pqS

0  

 
where p and q stands for the polarizations of the received 
and transmitted radar signals and V, DB and S are volume, 
double-bounce and surface scattering mechanisms. Each 
scattering mechanism has simplified expressions taking into 
account the average volume attenuation, a trunk-ground 
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interaction assuming the tree trunks are vertically 
distributed and the Fresnel reflectivity of surface. This 
forward model (CM) is based on simplifications of a two-
layer forest model to separate structural and dielectric 
parameters [7-8]. The structure of the forest is contained in 
the above ground biomass (W). The soil moisture 
information is in the double-bounce term with the Fresnel 
reflectivity and in the bare soil scattering. Physical 
phenomena are gathered in these terms taking into account 
the attenuation through the vegetation. A set of structural 
forest variables is used to parameterize the forward model. 
Then to anticipate some calibration issues and some errors 
in the forward model, some factors are fitted with ground 
measurements assuming the soil moisture equal to 40 
cm3.cm-3, a roughness of 3 cm and an incidence angle of 
45º. The model predictions for the three backscattering 
coefficients versus the biomass for La Selva forest are 
shown on Fig.1 below. 

 
Fig. 1:Backscattering coefficients (in power) - HH, VV and 
HV using AirSAR P-band data over La Selva. Crosses are 
the ground measurements for HH, diamonds for VV and 

circles for HV. Dashed line is the model prediction for HH, 
continuous line is for VV and dotted line is for HV.

 
The root-mean-square errors and the correlation coefficient 
between estimates using the model and ground 
measurements for the three backscattering coefficients 

(HH, HV and VV) are listed in Table 1. They show a very 
good agreement between model predictions and in-situ data. 
 
 

 HH VV HV 
RMSE 0.016819935 0.0142891 0.005095341 

R2 0.930469068 0.933139812 0.954046418 
Table1: RMSE and correlations coefficient computed 

between model and ground measurements. 
 

3. ESTIMATION PROCESS 
 

3.1. Initialization 
 

The procedure uses a Levenberg-Marquardt non-linear 
least-squares method to estimate the structural parameters 
which are the biomass, the dielectric constant and the 
roughness. To compute the soil moisture from the dielectric 
constant, the semi-empirical model of Hallikainen et al. [9] 
is used. The first step of this process is to give a “first 
guess” to initialize the three unknowns parameters. To do 
that bare surfaces are differentiated from vegetated areas so 
soil moisture and roughness algorithms such as Oh et al. [1], 
Dubois et al. [2], Shi et al. [3] or SPM [4] can be used to 
initialize the pixels identified as bare surfaces. Later we 
explain how to initialize the vegetated areas. A 
segmentation of non-forested and forested areas is first done 
using backscattering coefficients and NLCD data as well. 
The NLCD data is used to identify water bodies and 
developed areas which are masked out by allocating the 
NaN value. Once bare surfaces are selected the empirical 
model of Oh et al. [1] is used to estimate soil moisture and 
roughness. Then, the mean value of bare surfaces is 
computed over the entire SAR image and is allocated to 
every vegetated pixels. Concerning biomass a simple fit 
(SM) of the form: 
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is computed using ground measurements. This equation is 
then applied to the entire SAR image to get a biomass map. 
Initialization is now done for the three parameters and the 
inversion process can be run. 
 
3.2. Inversion  
 
The procedure uses the Levenberg-Marquardt non-linear 
least-squares method to estimate the structural parameters: 
biomass, dielectric constant and roughness. The Levenberg-
Marquardt is a local optimization process defined here by: 
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In our case, we run the optimization procedure over the 
entire SAR image pixel by pixel. In this case, σpq is the 
backscattering value recorded by the SAR system at this 
particular pixel, f() is the model equation, θ is the incidence 
angle at that pixel and W, ε and s are the parameters to be 
optimized for this pixel. 
 
To avoid some meaningless values, some limits are set for 
the three parameters: 
-0 < 0.5 ε0 < ε’ < 1.5 ε0 < 80 
-0 < 0.8 W0 < W’ < 1.2W0 < 500 Mg/ha 
-0 < 0.8 s0 < s’ < 1.2 s0 < 20 cm 
Where ’ and 0 are the estimated and initial dielectric 
constants respectively. W’ and W0 are the estimated and 
initial biomass values respectively. S’ and s0 are the 
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estimated and initial roughness values respectively. Next, 
when soil moisture (or roughness or biomass) exceeds a 
threshold then the value of the soil moisture (or roughness 
or biomass) at that pixel is replaced by the 3x3 average soil 
moisture (or roughness or biomass) of surrounding pixels. 
 

4. SENSITIVITY ANALYSIS 
 
The sensitivity of this model is tested by running 1000 
different tests where the initial value of each parameter 
varies randomly. From La Selva SAR data (HH, VV, HV) 
acquired by AirSAR in 1994 a biomass map is computed 
using SM. Soil moisture and roughness are set to a single 
value (mv=40% and s=3 cm). The three parameters are 
inserted in CM to get some simulated backscattering images 
(HH_bis, VV_bis, HV_bis). The ensuing simulated 
backscattering images are then re-inserted in the inverse 
model (CM-1) to get biomass (W’), soil moisture (mv’) and 
roughness (s’) estimates. The initial values for the three 
parameters are set randomly such as for biomass W0=W+m 
with m ∈ [-100; +100] Mg/ha, mv0=mv+k with k ∈ [-0.5mv; 
0.5mv] and s0=s+l with l ∈[-s; +s]. This test has been run 
1000 times. Finally the estimated parameters are compared 
to the initial ones (W’/W, mv’/mv, s’/s). The steps of this 
process are summarized in the diagram below. 
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Fig.2: Diagram showing the steps of the sensitivity analysis 

 

 
Fig. 3: biomass RMSE (Mg/ha) in function of the random 

value added to the true value (m) 
 

 
 

Fig. 4: soil moisture RMSE (%) in function of the initial 
value (mv0) 

 

 
Fig. 5: roughness RMSE (m) in function of the initial value 

(s0) 
 
This analysis shows that the inversion is not really sensitive 
to the initial values. Figure 3 shows that the biomass root-
mean-square error is lower than 40 Mg/ha in most cases. 
The mean value is equal to 24 Mg/ha. For soil moisture 
73.9% of the tests have a RMSE lower than 5% and the 
mean is about 4%. Figure 5 shows that the roughness RMSE 
is lower than 1cm in most cases (91.4%) and the mean is 
about 0.4948 cm. When the results are not equal to the 
expected ones it is explained by the fact that the inversion is 
reaching another local minimum.  
 

5. CONCLUSION 
 
A semi-empirical model to retrieve soil moisture, biomass 
and roughness is presented and analyzed in this paper. This 
model is a simplification of the distorted Born model. The 
model needs to be parameterized with a set of structural 
parameters about the forest and some ground measurements. 
The predictions of the model agree quite closely with the 
ground measurements. The correlation coefficients between 
estimated backscattering coefficients and in-situ data are 

higher than 0.9 for HH, VV and HV. This model is used to 
retrieve soil moisture, biomass and roughness by applying 
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the Levenberg-Marquardt algorithm. The initialization of 
this technique consists of estimating soil moisture and 
roughness over bare surfaces then allocating the mean value 
of these bare surfaces to the forested areas. For biomass a 
simple regression is computed between ground 
measurements and backscattering coefficients that allows to 
construct a biomass map afterwards. The inversion process 
is then run and bounded to avoid some meaningless values. 
The sensitivity of this process in function of initial values is 
assessed and shows that the inversion is not really sensitive 
to initial guesses. The initial value is randomly picked up in 
the range ± 50% of the true value for soil moisture, ± 100% 
of the true value for roughness and ± 100 Mg/ha of the true 
value for biomass. Results have a RMSE lower than 5% for 
soil moisture, lower than 0.5 cm for roughness and lower 
than 40 Mg/ha for a major part of the tests. 
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